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What is a graph coloring?

Convert a region coloring problem to a graph coloring problem.

−→
v1 v2

v3v4

−→

a b

cd
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What is a graph coloring?

Problem came forth from coloring world maps.
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The Four Color Theorem

Theorem

Every planar graph can be colored in at most four colors.

A simple statement. First formulated in 1852, proven over a hundred years
later in 1976.
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The Five Color Theorem

Theorem

Every planar graph can be colored in at most five colors.

Proof.

Every planar graph G has a vertex of deg(v) ≤ 5.
If deg(v) ≤ 4, can use fifth color.
If deg(v) = 5, can always free up a color.

Remove v from the graph and repeat until there are no vertices left. Add
back and color these vertices until we obtain a coloring of G .
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The Five Color Theorem

Most important argument

If deg(v) = 5, can always free up a color.

If there is an ac-chain, then we have
isolated b. Therefore, there can not be
a bd-chain from b to d . We may flip
the bd-chain of b to free up the color
d .
If there is no ac-chain, then a and c
are not connected. So we may flip the
ac-chain of a to free up the color c .

v

a

b

cd

e

c

a

c

a
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Configurations

Configurations are planar graphs.

Definition

A configuration C is contained in a connected planar graph G if G \ C is
connected.

Definition

A configuration C is reducible in a graph G if its presence implies that the
4-coloring of G can be reduced to the 4-coloring of G ′ with less vertices.

For the five color theorem, vertices of deg(v) ≤ 5 are all reducible
configurations. Therefore we can always break down a 5-coloring problem.
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Configurations
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Fundament of the Four Color Theorem

Four Color Theorem

Every planar graph G strongly-contains a configuration C that is either
k-reducible, D-reducible or C-reducible in G .
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Rings

Rings play a key role in seperating a graph in two pieces with a common
border.

Definition

A ring of n vertices Rn in a planar graph G is an induced cycle of G .

Figure: Valid ring (left). Invalid ring (right).
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Ring colorings

Definition

The set of all 4-colorings of a ring R in a planar graph G is given by
Φ(R ⊂ G ) or Φ(G ) if R is clear from the context.

Definition

The set of all ring colorings of Rn is given by Φ(n) = Φ(Rn).
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Rings are reducible

A ring on its own is a reducible configuration.

Theorem

The ring Rn with n ≥ 4 is reducible in every planar graph G.

Proof.

Because Rn is contained, the interior of Rn is empty. Contract two
non-neighboring vertices v1 and v3 to a new vertex u. We obtain the
smaller graph G ′. To reverse a coloring of G ′, we give v1 and v3 the same
color as u. We obtained a coloring for G .

a

b c

b

⇐⇒

a

b c

b

b
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Ring configurations

Definition

A planar graph C = Rn +K consisting of a ring Rn and an interior K is
called a ring configuration on Rn. K is called the core of C.

C

M K

We have already shown reducibility if K = ∅ (nothing)!
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Finding common ring colorings

We split our graph into M + R and K + R. Now we try to find a common
coloring on the ring R.

M

R R

K

Such a coloring might not always be guaranteed.
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Reducers

We can add extra vertices on the other side of the ring. This restricts the
possible colorings we can encounter.

M

R5

M

S

v

Figure: A graph that supports all ring colorings (left). A graph that only supports
3-colorings (right).

The ring + extra vertices and edges is a reducer graph.
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Reducers

We restrict the size of the reducers such that |S − R| ≤ k. By increasing
k , we get more control but a larger graph to color.

Reducer Size

If k = 0, then S = R and we reduce to M +R and K+R. This is the
smallest possible reduction and ideal situation.
If k = 1, then we can set S = R + v . Our reduced graph is then one
vertex larger.
If k ≥ |C|, then there is no point in reducing, since we obtain the
same graph M + C.
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k-Reducibility

Definition

A configuration C = K + R is k-reducible if for all planar graphs
G = M + C and some reducers S and S ′ on ≤ k < |C| vertices, there
exists a common ring coloring for M + S and K + S ′.

Definition

The ring Rn is k-reducible if all configurations C on Rn are at most
k-reducible.
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k-reducibility

Example

The rings R2 and R3 are 0-reducible. The only colorings are ab and abc.
Therefore, there is always a common ring coloring for M + R and K + R.

We will be proving the 0-reducibility of R4 and the 1-reducibility of R5

after introducing Kempe-chains.
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Kempe-chains

Definition

Let Gab(x) be the subgraph consisting of all the vertices colored ab in the
coloring x of G . Then the Kempe-chain κab(v) or ab-chain of the vertex v
is the component of Gab(x) that contains v .

a b c

b c a

c d b

a d b

c b a

d c d

Figure: We write v1
ab
⌢ v2 to indicate v1 and v2 lie on the same ab-chain.
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Ring schemes

Definition

Given a coloring x of a planar graph G and the colors on its ring x(R).
The scheme on R of x consists of x(R) with knowledge whether
u ∈ κab(v) for two ring vertices u, v ∈ R and colors ab.

a

b

ca

b

c

a

c

a
=⇒

a b c a b
a

a b c a b
�d

Figure: The edge with ≫ indicates order of vertices in the coloring.
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Schemes imply new colorings

Definition

Given two schemes x and y . We say that x implies y if x = y or y can be
obtained from x by flipping a Kempe-chain. Write x =⇒ y .

a b c a b
a

=⇒ a b c a d
a

, a b c a b
�d

=⇒ a d c a b
�d

.

This is the key argument we used in the five color theorem!
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We will be back in 5 minutes.

Timothy van der Valk Heart of the Four Color Theorem 34 / 81



Table of Contents
1 Part 1

Graph coloring

Reducible configurations

k-reducibility

2 Part 2

0-reducibility of ring R4

1-reducibility of ring R5

3 Part 3

D-reducibility

C-reducibility

4 Conclusion

Timothy van der Valk Heart of the Four Color Theorem 35 / 81



0-reducibility of ring R4

Theorem

The ring R4 is 0-reducible

Proof. We will show that there is a common ring coloring for any M + R4

and C. Let the ring colorings of the two graphs be given by

I = Φ(M + R4) and II = Φ(C). (1)

The situation is sketched below.

M

R4 R4

K
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0-reducibility of ring R4

Both parts have a plain ring R4, which we have shown to be reducible.
Therefore, we may contract any two opposing vertices.

This gives us a guarantee on two colorings in both sets I and II.

{
abab or abac,
baba or baca

}
⊂ I , II . (2)

Therefore, we have 4 possible options for guaranteed colorings in I and II,
3 of which are unique.

1 = {abab}, 2 =

{
abab
baca

}
, 3 =

{
abac
baba

}
, 4 =

{
abac
baca

}
. (3)
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0-reducibility of ring R4

1 = {abab}, 2 =

{
abab
baca

}
, 3 =

{
abac
baba

}
, 4 =

{
abac
baca

}
.

We consider all pairs that can occur for I and II. All but one pair already
have a common ring coloring.

The only pair that does not directly have a common coloring is 1 and 4 .
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0-reducibility of ring R4

Let {abab} ⊂ I and {abac, baca} ⊂ II be guaranteed colorings.

Suppose that in the coloring I(abab) we have v1
ad
⌢ v3.

I(abab) = a b a b
d

=⇒ II(abac)

I(abab) = a b a b
�d

=⇒ I(abcb) = II(baca).

(4)

Therefore, the guaranteed colorings always lead to a common coloring .
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Examples of reducible configurations on R4

Because R4 is 0-reducible, the interior of any configuration on R4 can be
removed.
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1-reducibility of ring R5

Theorem

The ring R5 is 1-reducible

Proof. We will show that there is a common ring coloring for any M + S
and K + S ′.

Let the ring colorings of the two graphs again be given by

I = Φ(M + S) and II = Φ(K + S ′). (5)

We can choose to reduce with any S and S ′ on ≤ 1 extra vertices. Each
choice gives us guaranteed colorings for I and II.
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1-reducibility of ring R5

First we examine the guaranteed colorings without using a reducer.

M

R5 R5

K

Figure: The reductions M + R5 and K + R5.

These plain rings R5 in each graph may be further reduced by contracting
two opposing vertices.
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1-reducibility of ring R5

We can contract two opposing vertices of R5 in 5 different ways. Each
choice guarantees a coloring where two vertices are colored the same.

Φ⋆ = {a∗∗a∗, ∗a∗∗a, a∗a∗∗, ∗a∗a∗, ∗∗a∗a∗}. (6)

The ∗-colors are still unknown, but we are guaranteed that the colorings
are possible, therefore Φ⋆ ⊂ I, II.
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1-reducibility of ring R5

Next, we examine the guaranteed colorings with a reducer that has 1 extra
vertex.

M

S S ′

K

Figure: The reductions M + S and K + S ′.

These reducers guarantee one 3-coloring of the ring.
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1-reducibility of ring R5

These reducers guarantee one 3-coloring of the ring R5.

ΦS = {cabab or acbab or abcab or abacb or ababc}. (7)

In total, we are guaranteed of two sets of colorings for I and II.

Φ⋆,ΦS ⊂ I, II.

Next, we show that these guaranteed colorings are sufficient to find a
common coloring in I and II.
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1-reducibility of ring R5

The 3-colorings are important because of two key properties that they
have.

Definition

The uniquely-colored vertex of a 3-coloring of R5 is called the marked
vertex, indicated by an underline such as in cabab.

Definition

Two 3-colorings of R5 are called adjacent if they have adjacent marked
vertices, such as in cabab and acbab.
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1-reducibility of ring R5

Both sets I and II are guaranteed to have one 3-coloring from ΦS . There
are three cases that can occur.

1 I and II have an adjacent coloring (cabab and acbab).

2 I and II have a non-adjacent coloring (cabab and abcab).

3 I and II have a coloring with the same marked vertex (cabab and
dcbcb). These are already equal, so we are done.
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1-reducibility of ring R5

1 I and II have an adjacent coloring (cabab and acbab).

2 I and II have a non-adjacent coloring (cabab and abcab).

We have two lemmas to deal with these cases. Together they guarantee a
common coloring in I and II.

2 =⇒ 1 or common coloring (Lemma 1)

↓
1 =⇒ common coloring (Lemma 2)
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1-reducibility of ring R5

Lemma 1

If I and II have a non-adjacent coloring, then they either have an adjacent
coloring or a common coloring.

Proof. Assume we have two non-adjacent colorings I(cabab) and

II(abcab). Suppose that v3
bc
⌢ v5 in II(abcab). This leads to

II(abcab) = a b c a b
b

=⇒ II(abcdb),

II(abcab) = a b c a b
�b

=⇒ II(acbab).

(8)

The second case results in a coloring adjacent to I(cabab) as desired.
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1-reducibility of ring R5

The first case results in II(abcdb).

Consider the coloring I(∗b∗∗b).

The two adjacent ∗-colors must be different from each other and b,
therefore we may assume that we have I(∗bcdb). The last ∗-color reveals 3
possibilities.

I(abcdb) = II(abcdb) from case 1,
I(cbcdb) adjacent to II(abcab),
I(dbcdb) = II(abcab).

(9)

Therefore we obtain either a common coloring or an adjacent coloring .
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1-reducibility of ring R5

Lemma 2

If I and II have an adjacent coloring, then they have a common coloring.

Proof. Assume we have two adjacent colorings I(cabab) and II(acbab).

Suppose that v3
bd
⌢ v5 in II(acbab). This leads to

II(acbab) = a c b a b
d

=⇒ I(cabab).

II(acbab) = a c b a b
�d

=⇒ II(acdab).

(10)

The first case leads to a common coloring as desired
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1-reducibility of ring R5

The second case results in II(acdab). Consider the coloring I(a∗∗a∗).

We may again assume to have I(acda∗). Then we have 3 remaining
possibilities for the ∗-color.

I(acdab) = II(acdab) from case 2,
I(acdac) = shifted +2 I(cabab),
I(acdad) = II(acbab).

Only the second case does not lead to a common coloring.
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1-reducibility of ring R5

We can repeat the same argument to continuously shift the marked vertex
+2 to the right for I and II. This results in a pattern.

v1 v2 v3 v4 v5 v1
1 I II I
2 II I
3 I II
4 II I
5 I II

At iteration 5, we obtain that II and I have the same marked vertex v1.
Therefore, by repetition we finally obtain that

II(acbab) → II(abacb) → II(cabab) = I(cabab) . (11)
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1-reducibility of ring R5

Lemma 1 and Lemma 2 together guarantee a common ring coloring. This
finishes the proof .
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Examples of reducible configurations on R5.
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Example of non-reducible configurations on R5.

Figure: Replacing this configuration by our reducer yields the same graph.
Therefore, this configuration does not fall under the 1-reducibility of R5. If it
were, then the four color theorem would proven.
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We will be back in 5 minutes.
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The Birkhoff Diamond

K
R6

Figure: The Birkhoff Diamond (bir).

The degrees of vertices in the core K fully determines the ring around it.

• −→ deg(v) = 5
· −→ deg(v) = 6
◦ −→ deg(v) = 7
□ −→ deg(v) = 8
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The Birkhoff Diamond

Φ(6)

ababab abacbd abcadc abcdab
ababac abacdb abcbab abcdac
ababcb abacdc abcbac abcdad
ababcd abcabc abcbad abcdbc
abacab abcabd abcbcb abcdbd
abacac abcacb abcbcd abcdcb
abacad abcacd abcbdb abcdcd
abacbc abcadb abcbdc

31

Figure: All unique ring colorings of R6. The colorings of Φ(Bir♢) in green.

Timothy van der Valk Heart of the Four Color Theorem 60 / 81



Implied colorings

Consider a chain v4
bd
⌢ v6 in ababab.

a b a b a b
d

=⇒ ababcb

a b a b a b
�d

=⇒ ababad = ababac .

(12)

Therefore, the coloring ababab implies the set

ababab =⇒ {ababcb, ababac} ⊂ Φ(Bir♢). (13)

We say that ababab is a fixable ring coloring of Bir♢.
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Implied colorings

Definition

A coloring x implies a set of colorings II if every scheme x⋆ of x implies a
coloring y ∈ II. Write x =⇒ II.

Definition

A set of colorings I implies II if every x ∈ I implies II. Write I =⇒ II.
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Implied colorings

Φ5(Bir♢) =⇒ Φ4(Bir♢) =⇒ Φ3(Bir♢) =⇒ . . . =⇒ Φ0(Bir♢). (14)

Definition

A set of colorings I n-implies a set II if there exist sets Bi for 0 < i < n
such that I =⇒ Bn−1, Bi =⇒ Bi−1 and B1 =⇒ II. We write I

n
=⇒ II.

Example

Φ5(Bir♢)
5

=⇒ ϕ0(Bir♢) (15)
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Implied colorings

Φ0(Bir♢) Φ1 Φ2 Φ3 Φ4 Φ5

ababac abcadb ababab abacad abacbd abcabd abcabc
ababcb abcbab ababcd abcbdb abcbdc abcadc
abacac abcbac abacab abcdac abcdbc
abacbc abcbad abcbcb abcdbd
abacdb abcbcd abcdad
abacdc abcdab
abcacb abcdcb
abcacd abcdcd

16 5 2 4 3 1

Figure: All n-implying sets of Bir♢. Together a total of 31 colorings. Only
differences are shown.
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D-reducibility

Definition

The max-implying set Φ(C) of a configuration C is the largest n-implying
set Φn(C).

Definition

A configuration C on Rn is D-reducible if Φ(C) = Φ(n).

Example

Because Φ5(Bir♢) = Φ(6), Bir♢ is D-reducible.
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D-reducibility

K
R6

What can we do if a ring coloring can not be fixed?
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The Bernhart Diamond

K
R8

Figure: The Bernhart Diamond (Ber♢). An example of a non D-reducible
configuration. Why?
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C-reducibility

valid

fixable

reducer fixable

reducer unfixable

symmetry fault

unfixable
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Reducers again

Reducers can be used to restrict the possible ring colorings. We need a
reducer whose generated colorings are all fixable . We have already seen
reducers when proving the 1-reducibility of R5!

A reducer consists of a contraction and extra interior edges and vertices.

σ(v1) = u1

v2

v3σ(v4) = u1

v5

σ
=⇒

u1 v2

v3

v5

S
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Reducers again

Definition

A ring contraction σ(v) on R is a map from R to the contracted ring σ(R).
Neighboring vertices of R may not be mapped to the same vertex by σ.

σ(v1) = u1

v2

v3σ(v4) = u1

v5

σ
=⇒

u1 v2

v3

v5
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Reducers again

Definition

A reducer (S , σ) of a configuration C consists of
A contraction σ(v) on R.
A graph |S | < |C| whose boundary is the contracted ring σ(R).

σ(v1) = u1

v2

v3σ(v4) = u1

v5

σ
=⇒

u1 v2

v3

v5

S
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Reducer for the Bernhart Diamond

v1

v8

v2

v5

v6

v4

v7

v3

u1

u2

The reducer generates the following type of colorings.

v1 u2 v3 v5 u1 v7 7→ v1 u2 v3 u2 v5 u1 v7 u1 . (16)
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C-reducibility

Definition

A configuration C is C-reducible if Φ(S , σ) ⊂ Φ(C) for some reducer (S , σ).

Example

The Bernhart Diamond (Ber♢) is C-reducible. The red colorings are
symmetry faults that can be shown to be fixable
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Symmetry Faults

The two red colorings generated by the reducer are not fixable. Does this
mean that Ber♢ is not C-reducible?

abcbacbc (R1)

abcbdcbc (R2)
(17)

Bernhart has shown in 1947 that these colorings can in fact be fixed. So
there must be an error in Φ(Ber♢).
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Symmetry Faults

Consider the following colorings.

abcbacbc (R1) abcbadbc (F1) abcbacac (G1)

abcbdcbc (R2) abcbacbd (F1⋆) abcbdbcb (G2)
(18)

Then we have the implications

R2 =⇒ {G2,R1}
↓
R1 =⇒ {G1,F1}

(19)

Therefore, fixability of R1 and R2 depends fully on F1.
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Symmetry Faults

abcbacbc (R1) abcbadbc (F1) abcbacac (G1)

abcbdcbc (R2) abcbacbd (F1⋆) abcbdbcb (G2)
(20)

a

c(d)

b

a

d(c)

b

b

c

The colorings F1 and F1⋆ are symmetric. Therefore, F1 must be fixable!
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Definition

A graph symmetry of G is a bijection f (v) on the vertices of G that
preserves the neighbors of every vertex.

Definition

A symmetry fault of a configuration C is a coloring x that is not in Φ(C),
but whose symmetry x⋆ = f (x) is.

Bernhart mentioned the same problematic colorings in his proof. Is it a
coincidence? We have not delved deeper into this problem.
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Conclusion

k-reducibility extends upon ideas from the Five Color Theorem.

D-reducibility extends upon k-reducibility for rings 6 and above.

C-reducibility extends upon D-reducibility by avoiding bad ring
colorings.

Unavoidability guarantees that every planar graph has a reducible
configuration.

The Birkhoff Diamond and Bernhart Diamond illustrate D and
C-reducibility.

Symmetry faults in the Bernhart Diamond require more attention.
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Conclusion

The more advanced the concept of reducibility, the less reducible
configurations are needed (A/B-reducibility is a case of C reducibility).

1 633 1478 2822

C/D-reducibility

A/B/C/D-reducibility

D-reducibility

∞

No reducibilityPerfect reducibility

Neil Robertson et al.

Appel and Haken

John P. Steinberger

Figure: Number of reducible configurations on rings R6 and higher in proofs of
the four color theorem

.

Does ”Perfect reducibility” exist? If so, it will be the heart of the four
color theorem.
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The End

Thank you for your attention. Questions?
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