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The four color theorem is a famous result from graph theory that has resisted proof for well over a
100 years. An application of this theorem states that any world map can be colored with four colors
in such a way, that two neighboring regions receive different colors. When tasked with coloring a
map, the solution lies in the idea of breaking the map into smaller pieces that are easy to color.
This idea is called reducibility. This paper gives a more intuitive explanation of the three forms of
reducibility used in the proof of the four color theorem.

We have explained how maps with regions arranged in a ring can broken up into smaller maps.
This idea was first introduced by Birkhoff in 1913 [1]. We have rewritten his proofs for the reducing
of rings of 4 and 5 regions. For rings of 6 regions and above, we have introduced D-reducibility
with the Birkhoff Diamond as example. This is where the use of Kempe-chains is streamlined.
We improved upon the problems of D-reducibility by introducing C-reducibility with the Bernhart
Diamond as example. This form uses reducers to avoid bad colorings of the configuration.

We built up all this theory by leaning on the five color theorem for inspiration. We have put the
problem of proving the four color theorem in perspective of several simple concepts, such that the
intuition behind the proof as a whole can be better understood. Many figures and examples have
been given to this end.

Title image - The Birkhoff diamond shaped like a heart (original).
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Summary

The four color theorem states that every map can be colored with four colors in such a way, that
two neighboring regions receive different colors. Such a coloring is desired for a world map, because
it becomes easy to tell two neighboring regions apart. It has been observed by many map makers
that four colors suffice. The problem was first formulated by Francis Guthrie in 1852 while coloring
the map of England. He brought the problem to his brother Frederick Guthrie, who in turn brought
the problem to his mathematics lecturer Augustus De Morgan.

At the heart of the famous proof of the four color theorem by Appel and Haken in 1976 [4] is shown
that any map contains an arrangment of regions that can be removed and recolored later. These are
called reducible configurations. The four and five color theorem both used the theory of reducible
configurations. There are three forms of reducibility of a configuration used in these proofs.

1. k-reducibility shows that configurations with a boundary ring on less than 6 regions can be
reduced under certain conditions. This is done by proving that the interior and exterior can be
independently colored such that the colors on the bordering ring are the same. This justifies
removing the configuration from the map and adding it back after coloring the smaller map.

2. D-reducibility builds upon k-reducibility for configurations on rings of 6 regions and more.
This technique excels at proving reducibility for individual configurations. A configuration is
D-reducible if every ring coloring can be fixed to become a valid ring coloring of the configura-
tion. Kempe-chains are used to reconfigure invalid ring colorings to valid ones. The Birkhoff
Diamond is the most famous example for D-reducibility.

3. C-reducibility improves upon D-reducibility in case there are unfixable ring colorings. It avoids
these unfixable colorings by replacing the configuration with a smaller map called a reducer.
The ring colorings of the reducer put constraints on the ring colorings of the configuration.
These contraints are selected such that the constrained colorings are all fixable. This avoids
the unfixable colorings, making the configuration reducible.

The Bernhart Diamond is C-reducible with a valid reducer. However, two of the constrained
colorings from the reducer are unfixable. This turns out to be a flaw in either D-reducibility, or
the implementation of D-reducibility by John. P. Steinberger [7]. These two colorings depend on
another problem coloring called a symmetry fault. A symmetry fault is a coloring that is unfixable,
but whose symmetry is fixable. Therefore, both symmetries must be fixable. We have not uncovered
the cause of these faults, but Bernhart [2] proved that in case of the Bernhart Diamond, they are
not a problem.

The first proof of the four color theorem had a set of 1478 configurations to check. An improvement
was made by Neil Robertson et al. [6] in 1996 who reduced the set to only 633 configurations that
are either C or D-reducible. Lastly, an improvement was made by John P. Steinberger in 2009 who
used only D-reducibility at the cost of having to check 2822 configurations. It seems that using
more advanced forms of reducibility reduces the amount of configurations on ring 6 and above.
This hints that there might be an all-encompassing form of reducibility that uses the least number
of configurations, which would be The Heart of the Four Color Theorem.
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1 Introduction

The four color theorem was initially formulated from a problem in coloring world maps. A map
consists of regions that can border other regions on a flat surface. When we talk about a coloring
of a map, we mean a way to color its regions such that any two neighbors are colored differently.

The actual shape of the regions in our map is not of importance here. The key information that is
needed from a map, is the connectivity between regions. Such information can be represented in a
graph where vertices (circles) correspond to regions. An edge between two vertices then indicates
that the two corresponding regions are neighbors.

−→
v1 v2

v3v4

−→

a b

cd

Figure 1: The translation of a map coloring to a graph coloring. In the last step we replace colors
by the letters a,b,c and d for convenience. We obtain the coloring called abcd on a planar graph.

We will be working exclusively with planar graphs. See Figure 2 for examples. The order of colors
such as in abcd is indicated by the ≫ edge, which is the first edge between the first two vertices.
Two colorings are considered equal if they differ only by a renaming of colors.

Definition 1. A graph is planar if it has a planar embedding where no two edges cross each other.

Definition 2. Two colorings x and y are equal if they differ only by a renaming of the colors a, b, c
and d. I.e abab = acac.

Theorem 1. Every planar graph can be colored in at most four colors.

Figure 2: A non-planar embedding of the full graph K4 on 4 vertices (left). A planar embedding of
K4 (middle), therefore K4 is a planar graph. A non-planar graph K5 that has no planar embeddings
(right).
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1.1 The five color theorem

The proof of this four color theorem required over a 100 years to complete, despite its simple
statement. What would you do to prove such a statement? A first step to the proof is to work with
an easier problem instead. This is the five color theorem.

Theorem 2. Every planar graph can be colored in at most five colors.

Proof. Given a planar graph G. Because G is planar, a known result in graph theory is that G has
a vertex with at most five edges. That is, there is a v such that deg(v) ≤ 5. If we can always free
up a color for v regardless of the colors of its neighbors, then we may simply ignore v for now and
color the smaller graph G−v first. By repeating the same argument on G−v, we will eventually be
left with just a single vertex. From there we can build up the 5-coloring of our graph. Therefore,
let us show that we can always free up a color for v. We consider two cases for deg(v) ≤ 5.

� deg(v) ≤ 4. In this case, our vertex has at most four neighbors. These four neighbors have
at most four different colors. This means that one color is free to be used for v.

� deg(v) = 5. In this case, we have exactly five neighbors. Should our neighbors require only
four colors, we can simply use our fifth color here. However, it might occur that all five
neighbors use all five colors. Now we must try to free up a color in these neighbors.

Indeed, to treat the case deg(v) = 5 we should make a sketch of the situation first.

v

a

b

cd

e

c

a

c

a

Figure 3: The vertex v when having five differently colored neighbors. In gray, an example ac-chain
starting from the neighbor a.

Now we must ask ourselves, do these neighbors really need to use all five colors? We may flip all
the vertices colored a or c that are connected to the top neighbor a to change its color to c. This
way we freed up the color a. We say that we flipped the ac-chain of neighbor a. Such a chain can
be seen in Figure 1.1.

However, if the neighbor c is part of this ac-chain (represented by a dotted line), then it will get
flipped to a. So in this case we have not freed up the color a. We did however, isolate the vertex
b with the ac-chain. It is now impossible for a bd-chain from b to d to exist. Therefore we can flip
the bd-chain of b to change its color into d without affecting the neighbor d. This frees up the color
b.

Therefore, all cases show that a color can be freed up for v. By our earlier argument the graph is
5-colorable.
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1.2 Fundaments of the four color theorem

The proof of the four color theorem follows the same structure as the five color theorem. We show
that every planar graph contains a subgraph that allows us to reduce the coloring problem to a
smaller graph. With smaller we mean less vertices.

Definition 3. The size |G| of a graph is the number of vertices of G.

Definition 4. A graph H is smaller than G or H < G if |H| < |G|.

This notion of a subgraph of a graph requires some extra attention, since we will need a stronger
notion of being a subgraph called containment. See Figure 4. The graphs C contained in others
that we use for reducibility purposes, are called configurations.

Figure 4: A configuration contained in a graph (left). No containment (right).

Definition 5. A planar graph C is contained in a graph G, if G \ C (removed C) is connected.

Definition 6. A planar graph C is reducible in a graph G, if C being contained in G implies that
there exists graphs H < G called reductions whose 4-colorings can be used to 4-color G.

Therefore, in a reducibility proof, we may assume that any graph H smaller than G is 4-colorable.
Then, we show that a 4-coloring of H can be extended to a 4-coloring of G. Using these two
definitions we can formulate the key theorem of the four color theorem. We proved the same result
for the five color theorem.

Theorem 3. Every planar graph G contains a configuration C that is either k-reducible, D-reducible
or C-reducible in G.

From this theorem, a 4-coloring of a planar graph G0 can be found as follows. This is the same
procedure that we used for the vertex of deg(v) ≤ 5 in the five color theorem.

1. Find a reducible configuration Cn in Gn.

2. Reduce the graph Gn to the smaller graph Gn+1.

3. If Gn+1 is the empty graph, color all the intermediate graphs starting from Gn all the way
until G0. Else, repeat Step 1 on Gn+1.

There are many ways to prove that a configuration is reducible. We will be treating the three
central forms of reducibility that are used in the four color theorem. Each of them allows us to test
the reducibility of certain configurations. These forms of reducibility are by no means perfect, each
has its flaws and uses. A single, most general definition of reducibility is still not found. If such a
single form would exist, then it would capture the heart of the four color problem.

6



2 k-Reducibility

We have seen in the proof of the five color theorem that a vertex surrounded by five or less neighbors
can always be colored using one of five colors, even if all of its neighbors initially use all five colors.
If we have only four colors available, we will find that it is no longer guaranteed that we can free
a color. This is what Alfred Kempe tried to do when he gave the first false proof of the four color
theorem.

If we look at the key idea, we see that if one half of a graph is isolated from another half by a
group of boundary vertices, we can color this isolated part regardless of the colors on the boundary.
Naturally, the fundamental shape that seperates a graph in two halves is a ring.

Definition 7. A ring of n vertices Rn in a planar graph G is an induced cycle of G.

Figure 5: An example of the ring R4 surrounding a graph on four vertices (left). An example of an
invalid ring R5 (right).

The vertex of ring R1 can not have a single edge to itself, instead, it acts as a bridge from one part
of a graph to the other. For rings present in graphs, we are interested in which colorings are possible
on them, called ring colorings. The set of these colorings for a graph G we shall define. It turns
out that the rings n ≥ 4 are already reducible configurations. Therefore, all future configurations
will only contain triangles (the ring R3), they will be triangulations.

Definition 8. The set of all valid 4-colorings of a ring R in a planar graph G is given by Φ(R ⊂ G)
or Φ(G) if R is clear from the context.

Definition 9. The set of all valid ring colorings of Rn is given by Φ(n) = Φ(Rn).

Theorem 4. The ring Rn with n ≥ 4 is reducible in every planar graph G.

Proof. Let Rn be contained in G. Since the interior of Rn is empty and n ≥ 4, we may contract
the two non-neighboring ring vertices v1, v3 to a new vertex u. As a result, we obtain the graph G′

on one less vertex. See Figure 6.

Given a 4-coloring of G′. Because Rn is a ring, there will be no edges between the ring vertices v1
and v3. Therefore, we may give v1 and v3 the same color as u without issue. Let the other vertices
of G be given the same color as their G′ counterparts. Then we have obtained a 4-coloring of G.
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a

b c

b

⇐⇒

a

b c

b

b

Figure 6: The ring R4 being contracted to a smaller graph G′. The coloring of G′ can be reversed
to a coloring of G.

2.1 Ring configurations

We have now seen that rings with nothing on their interior are already reducible. The natural
next step would be to consider rings with an interior K called a core. These will be called ring
configurations, since they are configurations with a ring as their boundary. All configurations used
in the four color theorem are ring configurations!

Definition 10. A planar graph C = Rn +K consisting of a ring Rn and a core K is called a ring
configuration on Rn.

C

M K

Figure 7: A graph M + C with a ring configuration C on R5.

If a ring configuration C on R is contained in a graph G, then the ring R acts as border between
the interior K and exterior M . Suppose that we removed from G the interior K of C to obtain the
graph M +R. If we colored M +R and C individually, then we could add the interior K back if the
two colorings have the same colors on the ring R. This is the essence of k-reducibility. We prove
that such a common ring coloring can always be found. Mathematically, we phrase this as

Φ(C) ∩ Φ(M +R) ̸= ∅. (1)

I.e, the sets of possible ring colorings of R in C and M + R have a common element. Given a
configuration C, we can question whether such a common element exists for all graphs M + C.
To answer this question, we must know to some degree which colorings exist in Φ(M + R). Such
colorings we call guaranteed colorings. They are all we can work with if the graph M is arbitrary.
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2.2 Kempe-chains

In the five color theorem we worked with a vertex that had 5 neighbors. We used chains of 2 colors
between its neighbors to flip the colors of these neighbors, creating a new coloring. If we return
to the problem of finding a common ring coloring for a ring configuration C on R and the graph
M +R, we do not know much of the ring colorings in Φ(M +R). All we know, are the guaranteed
colorings from contracting the ring R. To obtain more guaranteed colorings, we can use the same
trick of flipping the colors of vertices on the same chain. Therefore, let us define Kempe-chains.

Definition 11. Let Gab(x) be the subgraph consisting of all the vertices colored ab in the coloring
x of G. Then the Kempe-chain κab(v) or ab-chain of the vertex v is the component of Gab(x) that
contains v.

a b c

b c a

c d b

a d b

c b a

d c d

Figure 8: The components of Gab(x) for a planar graph G and its coloring x are highlighted. We

write u
ab
⌢ v or u ∈ κab(v) if u and v are on the same component.

We can flip the colors of a chain κab(v) without breaking the current coloring. Imagine in your head
how you can swap the chains in Figure 8 for example. This is the trick to creating new guaranteed
ring colorings in Φ(M +R).

Now, suppose that we are guaranteed that the coloring abab is in Φ(M +R). If we want to flip any
Kempe-chains on abab, then it is necessary to have information on them. This information is not
obvious from the coloring abab itself. To add this information, we may consider two cases, one in
which a chain is present, and another in which it is not. To visualise the Kempe-chains that are
present on a coloring like abab, we may draw lines between vertices like

a b a b
d

, a b a b
c

, a b a b
�c

. (2)

From this notation, it is visible at glance what the structure is of the ring coloring abab. A ring
coloring together with knowledge of Kempe-chains we call a scheme. In the left-most scheme for

example, we see v1
ad
⌢ v3. In the middle scheme, we see v2

bc
⌢ v4 and in the right-most scheme, we

see that v1 and v3 are not connected by an ac-chain.
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a

b

ca

b

c

a

c

a

=⇒
a b c a b
a

a b c a b
�d

Figure 9: Two ring schemes that are derived from a graph coloring.

Definition 12. Given a coloring x of a planar graph G and the colors on its ring x(R). The
scheme on R of x consists of x(R) with knowledge whether u ∈ κab(v) for two ring vertices u, v ∈ R
and colors ab.

We will often make a case dinstinction on the Kempe-chains in the scheme of a ring coloring. We
consider a case in which the scheme has the chain, and a case in which it has not. We rarely ever
know all the Kempe-chains of a scheme, but this is also never necessary. Given the information
of just one Kempe-chain in a scheme, we can start reconfiguring the colors of the ring by flipping
Kempe-chains. This results in a new scheme with different ring colors. We say that one scheme
implies another scheme.

Definition 13. Given two schemes x and y. We say that x =⇒ y if x = y or y can be obtained
from x by flipping a Kempe-chain.

1 a b c a b
a

=⇒ a b c a d
a

,

2 a b c a b
�d

=⇒ a d c a d
�d

,

3 a b c a b
a

=⇒ c b a c b
a

.

For the two schemes from Figure 9, we have given two implied schemes above (change is highlighted).
To deduce these implied colorings, we followed a few simple rules.

1. The two vertices colored b are seperated by the ac-chain κac(v1). Therefore, the bd-chain
κbd(v5) can not possibly connect with v2. This results in only v5 being recolored to d if we
flip this chain.

2. It is now directly given that κbd(v5) does not connect to v1, therefore we may flip v5 to d in
the same way as in the first case.

3. Now we know v1 and v3 are in the same ac-chain. Because v4 neighbors v3 on the ring, it will
also be included in this chain. Since all three are on κac(v1), flipping this chain results in all
their colors to be flipped.

Refer to these examples whenever a step of implying colorings in a proof is confusing. It will be a
key concept for the remainder of the paper.
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2.3 Reducibility of configurations on R4

Using just the power of schemes and Kempe-chains, we can already tackle the reducibility of any
configuration on R4. This proof serves as an excellent introduction into applying schemes and
Kempe-chains, just like in the five color theorem.

Theorem 5. Every configuration C on R4 is reducible in every planar graph.

Proof. Let the planar graph M + C and configuration C = K +R4 be arbitrary. Let us denote the
sets of ring colorings of the reductions M + R and C by I and II respectively. We will refer to a
coloring in one of these sets by prepending the set name, i.e I(abab) means coloring abab in set I.
The situation is sketched in Figure 10.

I = Φ(M +R4) and II = Φ(C). (3)

M

R4 R4

K

Figure 10: The reductions M +R4 and K +R4 (C).

Both reductions contain the ring R4. Therefore, by Theorem 4, we may further reduce these graphs
by contracting any two opposing vertices of R4. Because there are only 2 ways to contract non-
neighboring vertices of R4, we will obtain two guaranteed colorings in I and II. In each of them,
the contracted vertices are colored the same.

{
abab or abac,
baba or baca

}
⊂ I, II. (4)

First note that abab = baba are the same coloring. The possibilities result in a total of 4 different
sets of guaranteed colorings for I and II.

1 = {abab}, 2 =

{
abab
baca

}
, 3 =

{
abac
baba

}
, 4 =

{
abac
baca

}
. (5)

All pairs of sets except 1 and 4 already have a common coloring. Therefore, let {abab} ⊂ I and

{abac, baca} ⊂ II. Now, we make a case distinction whether the chain v1
ad
⌢ v3 exists in I(abab) or

not.
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I(abab) = a b a b
d

=⇒ II(abac)

I(abab) = a b a b
�d

=⇒ I(abdb) = II(baca).

(6)

In any case, we obtain a common ring coloring between I and II. Therefore the ring R4 is 0-
reducible.

2.4 Reducers to constrain ring colorings

As we have seen in the reducibility proof of R4, we had enough guaranteed colorings to find a
common ring coloring through the reconfiguring of schemes. However, as we will see in the next
section, we will need guaranteed 3-colorings like cabab and abcab to prove that configurations on R5

are reducible. A 3-coloring is not guaranteed from simply contracting ring vertices from Theorem
4. Therefore, we seek a technique to obtain more guaranteed colorings such as 3-colorings.

However, such a technique will come at cost. The cost is that we will no longer be able to reduce
to M +R, and must instead reduce to a slightly bigger graph M +S where R ⊂ S. The graph S is
called a reducer. It is chosen in such a way that it guarantees the colorings we need in Φ(M + S).
The reducer that we will use to guarantee 3-colorings of R5 is shown in Figure 11.

M

R5

M

W5

v

Figure 11: The graph M + R5 (left). The graph M + W5 that guarantees 3-colorings of the R5

(right).

The reduction we used for R4 is similar to the left-most graph in Figure 11. This graph allows us
to contract two vertices of the R5 to force them to be the same color. Since there are 5 ways to
contract two non-neighboring vertices of R5, we are guaranteed all of the following 5 colorings.

Φ⋆(5) = {a∗∗a∗, ∗a∗∗a, a∗a∗∗, ∗a∗a∗, ∗∗a∗a}. (7)

The ∗-colors in these colorings are still unknown. This set Φ⋆(5) contains all the guaranteed colorings
from contracting vertices of the ring R5. Every ring has such a set. For the ring reducibility proof
of R4 for example, we used the following set of 2 colorings.

Φ⋆(4) = {a∗a∗, ∗a∗a}. (8)
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Definition 14. The set Φ⋆(n) consists of all guaranteed ∗-colorings of Rn obtained from successive
contraction of non-neighboring vertices.

Imagine how larger rings like R6 are able to contract two opposing vertices twice in a row. This
guarantees that 2 pairs of vertices are colored the same. We wont be using these sets for rings
beyond R5, but it should not be difficult to define exactly all the ∗-colorings for every ring Rn.

To continue with our introduction of reducers, let us consider now the colorings of the right-most
graph M+W5 in Figure 11. The graph S = W5 is called the wheel graph on R5. It is clear that this
graph is 1 vertex bigger than M +R5, hence making it a weaker reduction. However, in exchange
we are guaranteed only one of the following five 3-colorings.

ΦW5 = {cabab ∨ acbab ∨ abcab ∨ abacb ∨ ababc}. (9)

We have underlined the uniquely colored vertex of each 3-coloring. From the usage of a logical-OR
symbol (∨), we will have in fact multiple options for the set ΦW5 . In general, we will use the
notation ΦS to indicate some set of guaranteed ring colorings of a reducer S, even if there are
multiple options for this set.

Definition 15. The set ΦS is some set of guaranteed ring colorings of a reducer S.

From the examples of the sets Φ⋆(5) and ΦW5 , it is clear that the use of a reducer guarantees more
types of ring colorings. These guarantees can then be used to find common ring colorings of two
graphs, through the reconfiguration of Kempe-chains. Therefore, let the reduction for M be given
by

M + S with Rn ⊂ S and |S| ≤ k + n. (10)

The k in the maximum size of our reducer |S| ≤ k + n indicates how many other vertices we have
in S besides the ring Rn. This parameter determines the amount of control we have over the ring
colorings.

� If k = 0 we can take R4 as example. In this case we had S = R4 and we reduced to M +R4.
This is the smallest possible reduction. We could only use guaranteed colorings in Φ⋆(4).

� If k = 1, we can take R5 as example. Here we will set S = W5 such that we reduce to M+W5

instead. This gives us a guaranteed 3-coloring from ΦW5 . However, the graph M +W5 would
only be smaller than M + C if C > W5. This means that there must be at least 2 vertices in
the interior of C. This limits which configurations on R5 are reducible.

� If k ≥ |C|, then there is never a point in reducing, since we always obtain the same graph
M + C by setting S = C or a larger one.

Therefore, we must require that k < C in order for C to be reducible. With this, all the components
to define k-reducibility of a configuration C are in place.
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Definition 16. A configuration C on Rn is k-reducible for k < |C|, if for all planar graphs M there
exists a reducer with |S| ≤ k such that

Φ(M + S) ∩ Φ(C) ̸= ∅. (11)

We have already proven that configurations on R4 are 0-reducible. Configurations on R1, R2 and
R3 are also trivial examples of 0-reducibility. Their only colorings are of the form a, ab and abc
respectively, therefore, we have Φ(M +Rn) = Φ(C) for each of them. We have hinted a non-trivial
example in our motivation for reducers. This is where we prove the 1-reducibility of configurations
on R5.

2.5 Reducibility of configurations on R5

Recall that every planar graph has a vertex with deg(v) ≤ 5. If we add edges between the neighbors
of this vertex, then we obtain the rings R1 thru R5. We have seen the 0-reducibility of configurations
on the first four. Therefore, if we could prove that every configuration on R5 is 0-reducible, any
planar graph would be reducible and the four color theorem would follow. Many people have tried
to show this and failed, so let this serve as an warning as to why we should prove 1-reducibility
instead.

Theorem 6. A configuration C on R5 is 1-reducible in all planar graphs M if it has a 3-coloring,
or all planar graphs with |M | > 1 if it does not.

Proof. We may consider a configuration with |C| > 1. Let the planar graph M be arbitary. We will
again use the convention of the sets I and II for the ring colorings.

I = Φ(M + S) and II = Φ(C). (12)

The heart of this proof depends on a guaranteed 3-coloring in both I and II. Because we may set
our reducer S = W5 (See Figure 11), we are guaranteed of the following colorings.

Φ⋆(5) ⊂ I, II and ΦW5 ⊂ I, II. (13)

To justify that ΦW5 ⊂ II in case a 3-coloring is not given by C from the start, let us add a single
vertex v to the configuration C as illustrated in Figure 12. This results in the graph C′ on 1 more
vertex. We may assume that C′ has a 4-coloring because C′ < M + C from our assumption that
|M | > 1. In particular, C′ will have a 3-coloring on the ring from W5. We may remove v in this
3-coloring to obtain a 3-coloring of C. Therefore ΦW5 ⊂ Φ(C).

14



W5

Kv

Figure 12: The modified configuration C′ used to guarantee a 3-coloring of C.

A special property of 3-colorings on R5 is that there will always be a single vertex colored uniquely,
we call this the marked vertex. This vertex acts as a kind of ’pivot’ to tell if two 3-colorings are
adjacent. These two concepts are key to the proof.

Definition 17. The uniquely-colored vertex of a 3-coloring of R5 is called the marked vertex,
indicated by an underline such as in cabab.

Definition 18. Two 3-colorings of R5 are called adjacent if they have adjacent marked vertices,
such as in cabab and acbab.

Since we have guaranteed 3-colorings for both I and II, we can split up our proof into 3 cases.

1. I and II have an adjacent coloring (cabab and acbab).

2. I and II have a non-adjacent coloring (cabab and abcab).

3. I and II have a coloring with the same marked vertex (cabab and dcbcb). These are already
equal, so we are done.

Therefore, we only need to consider the cases 1 and 2 . We will prove two lemma’s to this end.
Their relation is illustrated below.

2 =⇒ 1 or common coloring (Lemma 1)

↓
1 =⇒ common coloring (Lemma 2)
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Lemma 1. If I and II have a non-adjacent coloring, then they either have an adjacent coloring or
a common coloring.

Proof. Let two non-adjacent colorings I(cabab) and II(abcab) be given. We make a case dinstinction

whether the chain v3
bc
⌢ v5 exists in II(abcab) or not.

II(abcab) = a b c a b
b

=⇒ II(abcdb),

II(abcab) = a b c a b
�b

=⇒ II(acbab).

(14)

The second case results in a coloring adjacent to I(cabab). For the first case, we consider the
coloring I(∗b∗∗b). The two adjacent ∗-colors must be different from each other and b, therefore we
may assume that we have I(∗bcdb). The last ∗-color reveals 3 possibilities.

I(abcdb) = II(abcdb) from (14),
I(cbcdb) adjacent to II(abcab),
I(dbcdb) = II(abcab).

(15)

Therefore we obtain either a common coloring or an adjacent coloring. Note that the pair of
non-adjacent colorings we chose is the only unique one on R5 (up to rotational symmetry).

Lemma 2. If I and II have an adjacent coloring, then they have a common coloring.

Proof. Let two adjacent colorings I(cabab) and II(acbab) be given. We make a case dinstinction

whether the chain v3
bd
⌢ v5 exists in II(acbab) or not.

II(acbab) = a c b a b
d

=⇒ I(cabab).

II(acbab) = a c b a b
�d

=⇒ II(acdab).

(16)

The first case leads to a common coloring. For the second case, we consider the coloring I(a∗∗a∗).
We may again assume to have I(acda∗). Then the 3 remaining possibilities for the ∗-color are

I(acdab) = II(acdab), from (16),
I(acdac) = shifted +2 I(cabab),
I(acdad) = II(acbab).

If we do not obtain common colorings, we may repeat this procedure with II(acbab) and I(acdac)
to continously shift the marked vertex two to the right. The pattern that arises is illustrated in
Figure 13.
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v1 v2 v3 v4 v5 v1
1 I II I
2 II I
3 I II
4 II I
5 I II

Figure 13: Marked vertices of I and II obtained by repetition of the earlier procedure. Every step
shifts the leftmost marked vertex two to the right.

At iteration 5, we obtain that II has the same marked vertex v1 as I. Therefore, by repetition we
obtain that

II(acbab) → II(abacb) → II(cabab) = I(cabab). (17)

Therefore, adjacent colorings imply a common coloring for I and II. Combining these two lemmas
yields a guaranteed common ring coloring for I and II regardless of the case.
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3 D-Reducibility

We have seen the reducibility of configurations on R4 and R5. Naturally, we might try to investigate
the reducibility of configurations on R6 and beyond. However, as we have seen in the increase in
complexity for the 1-reducibility on R5, this will likely be a very tough problem. The difficulty of
this problem lies in the fact the we try to prove the reducibility of many configurations on Rn at
once. However, it is much easier to analyze individual configurations. This why special forms of
reducibility were created to analyse such individual configurations. Among which D-reducibility,
which is inspired by k-reducibility.

3.1 Definition with the Birkhoff Diamond

We will be working with an example, the Birkhoff Diamond (Bir♢), which is a configuration on R6

with 4 vertices in the core. See Figure 14.

K
R6

Figure 14: The Birkhoff Diamond C = Bir♢ with the core highlighted.

An individual configuration on a ring is fully defined by its core K and the amount of edges each
vertex of K has with the ring R. The Birkhoff Diamond is uniquely determined by the four vertices
in the middle (its core) and the requirement that each vertex of K has a total of 5 edges in C. For
vertices in the core, the distinction between various heads of a vertex indicates this degree in C.
This is a convention set by Heesch [3] in 1969. Four such vertex-heads are given below.

• −→ deg(v) = 5
· −→ deg(v) = 6
◦ −→ deg(v) = 7
□ −→ deg(v) = 8

We will show that Bir♢ is 0-reducible by a careful investigation of all the ring colorings of Bir♢ and
R6. Since we know exactly what the graph is of Bir♢, we can write down all its valid ring colorings.
We have provided all the ring colorings of R6 and Φ(Bir♢) in Figure 15.
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Φ(6)
ababab abacbd abcadc abcdab
ababac abacdb abcbab abcdac
ababcb abacdc abcbac abcdad
ababcd abcabc abcbad abcdbc
abacab abcabd abcbcb abcdbd
abacac abcacb abcbcd abcdcb
abacad abcacd abcbdb abcdcd
abacbc abcadb abcbdc
31

Figure 15: The set Φ(6) and the valid colorings Φ(Bir♢) highlighted.

To show that Bir♢ is 0-reducible, we must show that all those invalid ring colorings can be fixed
using Kempe-chains to become valid. If we let M + R6 be arbitrary, then we can expect any ring

coloring of R6. Let us consider the coloring ababab for example. Suppose that v4
bd
⌢ v6. This

implies the following colorings.

a b a b a b
d

=⇒ ababcb

a b a b a b
�d

=⇒ ababad = ababac.

(18)

Because the invalid coloring ababab can be reconfigured into a valid coloring with only one Kempe-
chain flip, we say that the coloring ababab implies the set of colorings

ababab =⇒ {ababcb, ababac}. (19)

Definition 19. For a coloring x, we have x =⇒ II if for every scheme x⋆ of x, we have
x⋆ =⇒ y ∈ II.

Definition 20. For two set of colorings I and II, we I =⇒ II if for every x ∈ I, we have x =⇒ II.

The set of all colorings of R6 that require one Kempe-chain flip to be reconfigured in the same way
as ababab is called the 1-implying set of Bir♢.

Φ1(Bir♢) = Φ0(Bir♢) ∪ {ababab, ababcd, abacab, abcbcb, abcdad}. (20)

This set is the largest that satisfies Φ1(Bir♢) =⇒ Φ0(Bir♢) = Φ(Bir♢). We may repeat what we
did for Φ1(Bir♢) to obtain sets of colorings that require 2, 3 and more Kempe-chain flips to become
a valid coloring. This higher-order implication between sets of colorings is called n-implication.

Φ5(Bir♢) =⇒ Φ4(Bir♢) =⇒ Φ3(Bir♢) =⇒ . . . =⇒ Φ(Bir♢). (21)
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Definition 21. For two sets of colorings I and II, we have I
n

=⇒ II if there exist sets Bi for
0 < i < n such that

I =⇒ Bn−1, Bi =⇒ Bi−1 and B1 =⇒ II. (22)

Definition 22. The n-implying set Φn(C) of a configuration C is the largest set of ring colorings

such that Φn(C)
n

=⇒ Φ0(C) = Φ(C).

The set Φ5(Bir♢) satisfies Φ5(Bir♢)
5

=⇒ Φ0(Bir♢). Let us find all the n-implying sets of Bir♢.
We say that colorings in these sets are fixable, because they can always be reconfigured to a valid
coloring with Kempe-chains. For D-reducibility, we want all ring colorings to be fixable. All n-
implying sets together must cover all ring colorings. This is precisely the case with the Birkhoff
Diamond.

Φ0(Bir♢) Φ1 Φ2 Φ3 Φ4 Φ5

ababac abcadb ababab abacad abacbd abcabd abcabc
ababcb abcbab ababcd abcbdb abcbdc abcadc
abacac abcbac abacab abcdac abcdbc
abacbc abcbad abcbcb abcdbd
abacdb abcbcd abcdad
abacdc abcdab
abcacb abcdcb
abcacd abcdcd

16 5 2 4 3 1

Figure 16: All n-implying sets of Bir♢. The largest covers all 31 ring colorings of R6.

Definition 23. The max-implying set Φ(C) of a configuration C is the largest n-implying set Φn(C).

Definition 24. A coloring x ∈ Φ(C) is called a fixable ring coloring of C.

Definition 25. A configuration C on Rn is D-reducible if Φ(C) = Φ(n).

Φ0(C)

Φ1(C)

Φ(n) = Φ(C)

Figure 17: Every ring coloring is fixable for a D-reducible configuration.
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4 C-Reducibility

The definition of D-reducibility required that every ring coloring was reconfigurable to a valid
coloring of Φ(C). If this is not possible, we must avoid the unfixable colorings. In Section 2.4 we
introduced reducers to guarantee certain ring colorings for use in proofs. These reducers constrain
which ring colorings can be encountered on the ring of the original configuration. Therefore, we
may apply them in the same manner for individual configurations to avoid unfixable colorings in
D-reducibility. This results in what is known as C-reducibility.

4.1 Definition with Bernhart’s Diamond

We will be working with an example as we develop this theory. This example is a relative of the
Birkhoff Diamond (Bir♢), called the Bernhart Diamond (Ber♢). First proven to be reducible by
Arthur Frederick Bernhart in 1947 [2].

K
R8

Figure 18: The Bernhart Diamond C = Bir♢ with the core highlighted.

The core of Ber♢ as highlighted in Figure 18 can be found as a configuration in a list by Frank
Allaire et al. [5]. The two vertices with a small dot ( ·) require 6 edges in C, as opposed to 5 in Bir♢.
This is their only difference. We will follow the same procedure as we did for Bir♢ by analyzing all
compatible colorings. The ring of size 8 has 274 unique colorings, in addition, the max-implying
set Φ(Ber♢) has 92 colorings. Therefore, Ber♢ is not D-reducible. See the green and blue colored
cells in Figure 19.
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Φ(8)
abababab abacadac abcababc abcadbab abcbcbdb abcdadbc
abababac abacadad abcababd abcadbac abcbcbdc abcdadbd
abababcb abacadbc abcabacb abcadbad abcbcdab abcdadcb
abababcd abacadbd abcabacd abcadbcb abcbcdac abcdadcd
ababacab abacadcb abcabadb abcadbcd abcbcdad abcdbabc
ababacac abacadcd abcabadc abcadbdb abcbcdbc abcdbabd
ababacad abacbabc abcabcab abcadbdc abcbcdbd abcdbacb
ababacbc abacbabd abcabcac abcadcab abcbcdcb abcdbacd
ababacbd abacbacb abcabcad abcadcac abcbcdcd abcdbadb
ababacdb abacbacd abcabcbc abcadcad abcbdabc abcdbadc
ababacdc abacbadb abcabcbd abcadcbc abcbdabd abcdbcab
ababcabc abacbadc abcabcdb abcadcbd abcbdacb abcdbcac
ababcabd abacbcab abcabcdc abcadcdb abcbdacd abcdbcad
ababcacb abacbcac abcabdab abcadcdc abcbdadb abcdbcbc
ababcacd abacbcad abcabdac abcbabab abcbdadc abcdbcbd
ababcadb abacbcbc abcabdad abcbabac abcbdbab abcdbcdb
ababcadc abacbcbd abcabdbc abcbabad abcbdbac abcdbcdc
ababcbab abacbcdb abcabdbd abcbabcb abcbdbad abcdbdab
ababcbac abacbcdc abcabdcb abcbabcd abcbdbcb abcdbdac
ababcbad abacbdab abcabdcd abcbabdb abcbdbcd abcdbdad
ababcbcb abacbdac abcacabc abcbabdc abcbdbdb abcdbdbc
ababcbcd abacbdad abcacabd abcbacab abcbdbdc abcdbdbd
ababcbdb abacbdbc abcacacb abcbacac abcbdcab abcdbdcb
ababcbdc abacbdbd abcacacd abcbacad abcbdcac abcdbdcd
ababcdab abacbdcb abcacadb abcbacbc abcbdcad abcdcabc
ababcdac abacbdcd abcacadc abcbacbd abcbdcbc abcdcabd
ababcdad abacdabc abcacbab abcbacdb abcbdcbd abcdcacb
ababcdbc abacdabd abcacbac abcbacdc abcbdcdb abcdcacd
ababcdbd abacdacb abcacbad abcbadab abcbdcdc abcdcadb
ababcdcb abacdacd abcacbcb abcbadac abcdabab abcdcadc
ababcdcd abacdadb abcacbcd abcbadad abcdabac abcdcbab
abacabab abacdadc abcacbdb abcbadbc abcdabad abcdcbac
abacabac abacdbab abcacbdc abcbadbd abcdabcb abcdcbad
abacabad abacdbac abcacdab abcbadcb abcdabcd abcdcbcb
abacabcb abacdbad abcacdac abcbadcd abcdabdb abcdcbcd
abacabcd abacdbcb abcacdad abcbcabc abcdabdc abcdcbdb
abacabdb abacdbcd abcacdbc abcbcabd abcdacab abcdcbdc
abacabdc abacdbdb abcacdbd abcbcacb abcdacac abcdcdab
abacacab abacdbdc abcacdcb abcbcacd abcdacad abcdcdac
abacacac abacdcab abcacdcd abcbcadb abcdacbc abcdcdad
abacacad abacdcac abcadabc abcbcadc abcdacbd abcdcdbc
abacacbc abacdcad abcadabd abcbcbab abcdacdb abcdcdbd
abacacbd abacdcbc abcadacb abcbcbac abcdacdc abcdcdcb
abacacdb abacdcbd abcadacd abcbcbad abcdadab abcdcdcd
abacacdc abacdcdb abcadadb abcbcbcb abcdadac
abacadab abacdcdc abcadadc abcbcbcd abcdadad

274

Figure 19: Ring colorings of R8. Green : The max-implying set of Ber♢. Underlined green : Valid

ring colorings of Ber♢. Blue : Fixable reducer-constrained colorings. Red : Unfixable reducer-

constrained colorings. Black : Symmetry faults that should be fixable.
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The blue cells indicate reducer-constrained colorings of Ber♢. All of them (except for the red ones)
are blue and therefore fixable. The way that these constraints are created is a through a process
we can control. We created a reducer as follows.

1. Contract using a mapping σ, any non-neighboring vertices of the ring R to a single point.
Two contracted vertices will be colored the same. The result is the contracted ring σ(R).

2. Turn the contracted ring σ(R) into the graph S by including extra edges and vertices on the
interior.

σ(v1) = u1

v2

v3σ(v4) = u1

v5

σ
=⇒

u1 v2

v3

v5

S

Figure 20: First, the two vertices v1 and v4 are contracted to the same vertex y1, then we turn the
contracted graph into S.

A contraction maps the vertices of R to the vertices of σ(R). Those vertices that are mapped to the
same vertex are contracted. This mapping allows us to directly convert a ring coloring x(u) of S
to a ring coloring x(σ(v)) of R. Note that the reducers we used for k-reducibility used the identity
contraction σ(v) = v, which does not contract any edges.

Definition 26. A ring contraction σ(v) on R is a map from the vertices of R 7→ σ(R). Neighboring
vertices of R may not be mapped to the same vertex.

Definition 27. σid(v) = v is the identity contraction.

Definition 28. A reducer (S, σ) of a configuration C consists of a contraction σ(v) on R and a
graph S < C whose boundary is the contracted ring σ(R).

Definition 29. The set of reducer-constrained ring colorings Φ(S, σ) consists of all the colorings
x(σ(v)) with x(u) a boundary coloring of S.

The reducer for Ber♢ is given in Figure 21. It consists of two contractions and a single extra edge
added by S in the middle. The mapping of colorings from S to R8 are given below. It is helpful to
think of a reducer solely as a set of constraints.

v1 u2 v3 v5 u1 v7 7→ v1 u2 v3 u2 v5 u1 v7 u1. (23)

In the next section we will show that the red generated colorings in Figure 19 are actually in
Φ(Ber♢), therefore Φ(S, σ) ⊂ Φ(Ber♢). As a result, we may replace Ber♢ by its reducer S and be
guaranteed that any coloring for S can be reconfigured ot a valid coloring. This is the essence of
C-reducibility.
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v1

v8

v2

v5

v6

v4

v7

v3

u1

u2

Figure 21: The reducer S of the Bernhart Diamond Bir♢. It forces that v2 = v4 ̸= v6 = v8. The
contractions force the same colors on pairs of vertices, while the added edges force different colors.

Definition 30. A configuration C is C-reducible if Φ(S, σ) ⊂ Φ(C) for some reducer (S, σ).

Φ0(C)

Φ(C)

Φ(n)

Φ(S, σ)

Figure 22: The max-implying set includes all generated colorings of Φ(S, σ).

For any given configuration, there are only a finite number of reducers (S, σ) possible. Therefore,
it is feasible to simply test all possible reducers for the condition Φ(S, σ) ⊂ Φ(C).
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4.2 Symmetry faults

If we come back to the red colorings from Figure 19, they are the two colorings we call faults R1
and R2. We will be working with the following colorings.

abcbacbc (R1)

abcbdcbc (R2)

abcbadbc (F1)

abcbacbd (F1⋆) ∈ Φ(Ber♢)

abcbacac (G1) ∈ Φ(Ber♢)

abcbdbcb (G2) ∈ Φ(Ber♢)

(24)

It was proven in 1947 by Bernhart [2] that the colorings R1 and R2 are in fact fixable. This is
because their fixability depends on the broken coloring F1 that should be fixable, this is one of the
black colorings from Figure 19. We have the following implications.

R2 =⇒ {G2,R1}
↓
R1 =⇒ {G1, F1}

(25)

Therefore, if F1 ∈ Φ(Ber♢) then R1, R2 ∈ Φ(Ber♢). The argument that Bernhart used was that
the ring coloring F1 is symmetric to the coloring F1⋆ ∈ Φ(Ber♢), therefore it should also be fixable.
The situation is sketched in Figure 23.

a

c
d

b

a

d
c

b

b

c

Figure 23: Horizontal symmetry of the colorings abcbadbc (F1) and abcbacbd (F1⋆) above the other.

We have not delved deeper into this problem, and do not know whether this is a fundamental flaw
of implied colorings or an error in our code from [7]. This proves that the Bernhart Diamond is
in fact C-reducible, because the red colorings are incorrectly flagged so. The root of the problem
being the colorings F1 and F1⋆, we will call them symmetry faults. In Figure 23, the symmetry is
a bijection between the vertices left and right of the symmetry line.

25



Definition 31. A graph symmetry of G is a bijection f(v) on the vertices of G that preserves the
neighbors of every vertex.

Definition 32. A symmetry fault of a configuration C is a coloring x that is not in Φ(C), but
whose symmetry x⋆ = f(x) is.

A future study on the symmetry fault in the Bernhart Diamond could lead to insights to improve
the definitions of C and D-reducibility. One would first verify if it is a computational error, and
then try to find more examples. In Bernhart’s 1947 paper [2], the four colorings R1, R2, F1 and
F1⋆ were also the only problem case, therefore it is unlikely to be a coincide.

4.3 Generalising D and k-reducibility

We have now seen all three forms of reducibility used in proofs of the four color theorem. You
might have noticed many similarities between the different forms. For example, the key use of
Kempe-chains, the reconfiguring of ring colorings and the use of reducers. Due to the way we built
up this theory, we extended upon each of the shortcomings of one form to motivate the next. It
might not come as a surprise then that C-reducibility is the most general of all forms. Let us first
consider the relation between D-reducibility and k-reducibility.

Theorem 7. D-reducibility implies 0-reducibility.

Proof. Suppose that we have D-reducibility C on Rn. Clearly, we have that Φ(M +Rn) ⊂ Φ(n) =
Φ(C). Therefore, every coloring of Φ(M + Rn) can be reconfigured to a coloring of Φ(C). This
reconfiguring means that at least one coloring of Φ(C) must exist in Φ(M +Rn). Therefore

Φ(M +Rn) ∩ Φ(C) ̸= ∅. (26)

Theorem 8. C-reducibility with reducer (Rn, σid) is equivalent to D-reducibility.

Proof. =⇒ Suppose that we have C-reducibility of C with reducer (Rn, σid). Then

Φ(Rn, σid) = Φ(n) ⊂ Φ(C) ⇐⇒ Φ(n) = Φ(C). (27)

⇐= Now suppose that we have D-reducibility. Then we may set S = Rn and σ = σid to obtain the
same result as in the above equation.
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Theorem 9. C-reducibility with reducer (S, σid) on Rn implies k-reducibility with k = |S| − n.

Proof. Suppose that we C-reducibility of C with (S, σid). Because Φ(M + S) ⊂ Φ(S, σid) ⊂ Φ(C),
at least some coloring of Φ(M + S) can be reconfigured to become valid. Therefore

Φ(M + S) ∩ Φ(C) ̸= ∅. (28)

In addition, our reducer S has k = |S| − n.

Note, that there reverse direction of k-reducibility implying D and C-reducibility is also possible,
but has some problems and technicalities that are not covered by the definitions. To go from k-
reducibility to D-reducibility for example, one must show that every ring coloring is reconfigurable
to Φ(C). With only the information that there is a common coloring in Φ(M + R) and Φ(C), it is
only possible to guarantee this reconfigurability if the set Φ(M +R) contains only this one coloring
and all its Kempe-chain reconfigurations. However, do there exist graphs whose colorings are all
derived from a single one? It is not known.
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5 Conclusion

We have seen how the rings and k-reducibility came forth from the five color theorem. D-reducibility
expanded upon k-reducibility for rings 6 and above. Then C-reducibility expanded upon D-
reducibility by avoiding unfixable colorings. We have worked through these forms of reducibility
with the Birkhoff Diamond and Bernhart Diamond as example. For the Bernhart Diamond, we
encountered symmetry faults that require further attention.

The ideas of the four color theorem are generalisations of what we did for the five color theorem.
Unavoidability of a reducible configuration plays a key role in both proofs. The theory of Kempe-
chains came forth from the need to obtain more colorings from a single guaranteed coloring. For
this, we had introduced some forms of notation to clarify our future arguments. The below Figure
illustrates how using more advanced forms of reducibility results in less configurations of ring size
6 and above.

Author Reducibility forms Configurations
Perfect reducibility 1

Neil Robertson et al. C, D 633
Appel and Haken A,B,C,D 1478
John P. Steinberger D 2822

No reducibility ∞

Figure 24: Number of reducible configurations on rings R6 and higher in proofs of the four color
theorem

.

It is expected that there should exist more advanced forms of reducibility that essential hone in on
the ”heart of the four color theorem”. Just like how the vertices of deg(v) ≤ 5 were at the heart of
the five color theorem. The computer part of the four color theorem was only needed to evaluate
the trivial calculations of finding implying sets of configurations and reducers. The essence of the
four color theorem does not lie in these calculations. In the end, reducibility lies at the heart of
the four color theorem and the various implementation and calculation issues caused the proof to
become so long and infamous.
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